About the seminar

This seminar aims to increase the links between the different laboratories in Saclay in the field of Applied Maths, Statistics and Machine Learning. The Seminar is organized every first Tuesday of the month with 2 presentations followed by a small refreshment. The localization of the seminar will change to accommodate the different labs.

Organization

Due to access restriction, you need to register for the seminar. A link is provided in the description and should also be sent with the seminar announcement. It will also help us organize for the food quantities. If you think you will come, please register! (even if you are unsure)

To not miss the next seminar, please subscribe to the announcement mailing list palaisien@inria.fr.
You can also add the calendar from the seminar to your own calendar (see below).

Next seminars

REGISTER 02 Apr 2025, 12h At Inria Saclay - Amphi Sophie Germain
TBA
TBA
Johannes Hertrich - Importance Corrected Neural JKO Sampling
In order to sample from an unnormalized probability density function, we propose to combine continuous normalizing flows (CNFs) with rejection-resampling steps based on importance weights. We relate the iterative training of CNFs with regularized velocity fields to a proximal mappings in the Wasserstein space. The alternation of local flow steps and non-local rejection-resampling steps allows to overcome local minima and mode collapse for multimodal distributions. The arising model can be ...
In order to sample from an unnormalized probability density function, we propose to combine continuous normalizing flows (CNFs) with rejection-resampling steps based on importance weights. We relate the iterative training of CNFs with regularized velocity fields to a proximal mappings in the Wasserstein space. The alternation of local flow steps and non-local rejection-resampling steps allows to overcome local minima and mode collapse for multimodal distributions. The arising model can be trained iteratively, reduces the reverse Kulback-Leibler (KL) loss function in each step, allows to generate iid samples and moreover allows for evaluations of the generated underlying density. Numerical examples demonstrate the efficiency of our approach.
REGISTER 07 May 2025, 12h At Inria Saclay - Amphi Sophie Germain
Tony Silveti-Falls - Training Deep Learning Models with Norm-Constrained LMOs
In this talk, I discuss optimization methods that leverage the linear minimization oracle (LMO) over a norm-ball and their application to training huge neural networks. We propose a new stochastic family of algorithms that uses the LMO to adapt to the geometry of the problem and, perhaps surprisingly, show that they can be applied to unconstrained problems. The resulting update rule unifies several existing optimization methods under a single framework. Furthermore, we propose an ...
In this talk, I discuss optimization methods that leverage the linear minimization oracle (LMO) over a norm-ball and their application to training huge neural networks. We propose a new stochastic family of algorithms that uses the LMO to adapt to the geometry of the problem and, perhaps surprisingly, show that they can be applied to unconstrained problems. The resulting update rule unifies several existing optimization methods under a single framework. Furthermore, we propose an explicit choice of norm for deep architectures, which, as a side benefit, leads to the transferability of hyperparameters across model sizes. Experimentally, we demonstrate significant speedups on nanoGPT training without any reliance on Adam. The proposed method is memory-efficient, requiring only one set of model weights and one set of gradients, which can be stored in half-precision.
TBA
TBA

Scientific Committee

The program and the organization of this seminar is driven by a scientific committee composed of members of the different laboratories in Saclay. The members of the committee are currently:

Funding

This seminar is made possible with financial support of the ENSAE and DataIA.